Model for heat conduction in nanofluids.
نویسندگان
چکیده
A comprehensive model has been proposed to account for the large enhancement of thermal conductivity in nanofluids and its strong temperature dependence, which the classical Maxwellian theory has been unable to explain. The dependence of thermal conductivity on particle size, concentration, and temperature has been taken care of simultaneously in our treatment. While the geometrical effect of an increase in surface area with a decrease in particle size, rationalized using a stationary particle model, accounts for the conductivity enhancement, a moving particle model developed from the Stokes-Einstein formula explains the temperature effect. Predictions from the combined model agree with the experimentally observed values of conductivity enhancement of nanofluids.
منابع مشابه
Fluid Flow and Heat Transfer of Nanofluids over a Flat Plate with Conjugate Heat Transfer
The falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial processes. This phenomenon has altered pure forced convection to a combination of heat conduction and heat convection in a flow over a plate. In this paper, the coupling of conduction (inside the plate) and forced convection of a non-homogeneous nanofluid flow (over a flat plate) ...
متن کاملNanofluids for Heat Transfer Enhancement – A Review
A nanofluid is a dilute liquid suspension of particles with at least one critical dimension smaller than ~100 nm. Research works so far suggest that nanofluids offer excellent heat transfer enhancement over conventional base fluids. The enhancement depends on several factors such as particle shape, particle size distribution, volume fraction of nanoparticles, temperature, pH, and thermal conduc...
متن کاملProbing Transport Mechanisms in Nanofluids by Molecular Dynamics Simulations
Enhanced thermal conduction in nanofluids is an observed phenomenon for which the underlying mechanistic processes are still being debated. We perform molecular dynamics (MD) simulations of the time-dependent heat current correlation to obtain the systematic, dynamical details at the atomistic level. Using a model system of Xe base fluid and Pt nanoparticles, we obtain the enhancement effects w...
متن کاملAnomalous heat transfer modes of nanofluids: a review based on statistical analysis
This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not...
متن کاملAn Experimental Study of the Steel Cylinder Quenching in Water-based Nanofluids
In this study, some parameters such as quenching and boiling curves of a stainless steel cylindrical rod 80 mm long and having a diameter of 15 mm were experimentally obtained in saturate pure water and two nanofluids (SiO2 and TiO2) with 0.01 wt%. The cylinder was vertically lowered into the pool of saturated water and its temporal center temperature was measured by a the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 93 14 شماره
صفحات -
تاریخ انتشار 2004